How do you measure the mass of a star? (Beginner)

Measuring the mass of stars in binary systems is easy. Binary systems are sets of two or more stars in orbit about each other. By measuring the size of the orbit, the stars' orbital speeds, and their orbital periods, we can determine exactly what the masses of the stars are. We can take that knowledge and then apply it to similar stars not in multiple systems.

We also can easily measure the luminosity and temperature of any star. A plot of luminocity versus temperature for a set of stars is called a Hertsprung-Russel (H-R) diagram, and it turns out that most stars lie along a thin band in this diagram known as the main Sequence. Stars arrange themselves by mass on the Main Sequence, with massive stars being hotter and brighter than their small-mass bretheren. If a star falls on the Main Sequence, we therefore immediately know its mass.

In addition to these methods, we also have an excellent understanding of how stars work. Our models of stellar structure are excellent predictors of the properties and evolution of stars. As it turns out, the mass of a star determines its life history from day 1, for all times thereafter, not only when the star is on the Main Sequence. So actually, the position of a star on the H-R diagram is a good indicator of its mass, regardless of whether it's on the Main Sequence or not.

This page updated on June 27, 2015

About the Author

Dave Kornreich

Dave was the founder of Ask an Astronomer. He got his PhD from Cornell in 2001 and is now an assistant professor in the Department of Physics and Physical Science at Humboldt State University in California. There he runs his own version of Ask the Astronomer. He also helps us out with the odd cosmology question.

Our Reddit AMAs

AMA = Ask Me (Us) Anything